8 research outputs found

    Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies

    Get PDF
    Objectives: The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease. Background: Intravascular optical coherence tomography (IVOCT) is a catheter-based modality that acquires images at a resolution of ∌10 ÎŒm, enabling visualization of blood vessel wall microstructure in vivo at an unprecedented level of detail. IVOCT devices are now commercially available worldwide, there is an active user base, and the interest in using this technology is growing. Incorporation of IVOCT in research and daily clinical practice can be facilitated by the development of uniform terminology and consensus-based standards on use of the technology, interpretation of the images, and reporting of IVOCT results. Methods: The IWG-IVOCT, comprising more than 260 academic and industry members from Asia, Europe, and the United States, formed in 2008 and convened on the topic of IVOCT standardization through a series of 9 national and international meetings. Results: Knowledge and recommendations from this group on key areas within the IVOCT field were assembled to generate this consensus document, authored by the Writing Committee, composed of academicians who have participated in meetings and/or writing of the text. Conclusions: This document may be broadly used as a standard reference regarding the current state of the IVOCT imaging modality, intended for researchers and clinicians who use IVOCT and analyze IVOCT data

    Calibration procedure for enhanced mirror artifact removal in full-range optical coherence tomography using passive quadrature demultiplexing

    No full text
    SignificancePassive quadrature demultiplexing allows full-range optical coherence tomography (FR-OCT). However, imperfections in the wavelength- and frequency-response of the demodulation circuits can cause residual mirror artifacts, which hinder high-quality imaging on both sides of zero delay.AimWe aim at achieving high mirror artifact extinction by calibrated postprocessing of the FR-OCT signal.ApproachWe propose a mathematical framework for the origin of the residual mirror peaks as well as a protocol allowing the precise measurement and correction of the associated errors directly from mirror measurements.ResultsWe demonstrate high extinction of the mirror artifact over the entire imaging range, as well as an assessment of the method's robustness to time and experimental conditions. We also provide a detailed description of the practical implementation of the method to ensure optimal reproducibility.ConclusionThe proposed method is simple to implement and produces high mirror artifact extinction. This may encourage the adoption of FR-OCT in clinical and industrial systems or loosen the performance requirements on the optical demodulation circuit, as the imperfections can be handled in postprocessing

    Intravascular optical coherence tomography on a beating heart model

    No full text
    The advantages and limitations of using a beating heart model in the development of intravascular optical coherence tomography are discussed. The model fills the gap between bench experiments, performed on phantoms and excised arteries, and whole animal in-vivo preparations. The beating heart model is stable for many hours, allowing for extended measurement times and multiple imaging sessions under in-vivo conditions without the complications of maintaining whole-animal preparation. The perfusate supplying the heart with nutrients can be switched between light scattering blood to a nonscattering perfusate to allow the optical system to be optimized without the need of an efficient blood displacement strategy. Direct access to the coronary vessels means that there is no need for x-ray fluoroscopic guidance of the catheter to the heart, as is the case in whole animal preparation. The model proves to be a valuable asset in the development of our intravascular optical coherence tomography technology.Peer reviewed: YesNRC publication: Ye

    Validation of parameter estimation methods for determining optical properties of atherosclerotic tissues in intravascular OCT

    No full text
    In this paper we present a new process for assessing optical properties of tissues from 3D pullbacks, the standard clinical acquisition method for iOCT data. Our method analyzes a volume of interest (VOI) consisting of about 100 A-lines spread across the angle of rotation (\u3b8) and along the artery, z. The new 3D method uses catheter correction, baseline removal, speckle noise reduction, alignment of A-line sequences, and robust estimation. We compare results to those from a more standard, gold standard stationary acquisition where many image frames are averaged to reduce noise. To do these studies in a controlled fashion, we use a realistic optical artery phantom containing of multiple tissue types. Precision and accuracy for 3D pullback analysis are reported. Our results indicate that when implementing the process on a stationary acquisition dataset, the uncertainty improves at each stage while the uncertainty is reduced. When comparing stationary acquisition dataset to pullback dataset, the values were as follows: calcium: 3.8\ub11.09mm -1 in stationary and 3.9\ub11.2 mm-1 in a pullback; lipid: 11.025\ub10.417 mm-1 in stationary and 11.27\ub10.25 mm-1 in pullback; fibrous: 6.08\ub11.337 mm-1 in stationary and 5.58\ub12.0 mm-1. These results indicates that the process presented in this paper introduce minimal bias and only a small change in uncertainty when comparing a stationary and pullback dataset, thus paves the way to a highly accurate clinical plaque type discrimination, enabling automatic classification.Peer reviewed: YesNRC publication: Ye

    Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

    Get PDF
    The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease
    corecore